

Introduction

Lung cancer is the leading cause of cancer incidence and mortality worldwide [1]. Non-small cell lung cancer (NSCLC) accounts for approximately 85% of all lung cancer cases, with around 1 million new diagnoses of advanced NSCLC (aNSCLC) each year worldwide [2,3]. The prognosis for aNSCLC remains poor, with a 1-year survival rate of only 29% following cytotoxic chemotherapy [4]. Before the advent of immune and target therapy, treatment options were limited to chemotherapy, which offered a median survival of about 12 months and had a challenging adverse event profile [5]. One-third of individuals with aNSCLC experience brain metastases [6]. At this time, the prognosis is even worse. More specifically, median overall survival (OS) estimated at 7.8 months, regardless of whether patients initially present with or later develop brain metastases [7].

Immune checkpoint inhibitors (ICIs) have transformed the treatment landscape for NSCLC. These therapies, particularly

***Corresponding Author(s): Lika Chkhaidze**

Caucasus Medical Centre, Tbilisi, Georgia.

Tel: 0186. +995 598525050,

Email: lika.chkhaidze719@med.tsu.edu.ge

Lika Chkhaidze, MD^{1*}; Anna Geguchadze, MD¹;

Mariam Vakhtangishvili, MD¹; Ivane Kiladze, MD, PhD^{1,2}

¹Caucasus Medical Centre, Tbilisi, Georgia.

²Ilia State University, Tbilisi, Georgia.

Received: Aug 05, 2025

Accepted: Aug 12, 2025

Published Online: Aug 19, 2025

Journal: Journal of Clinical and Medical Case Reports of Oncology

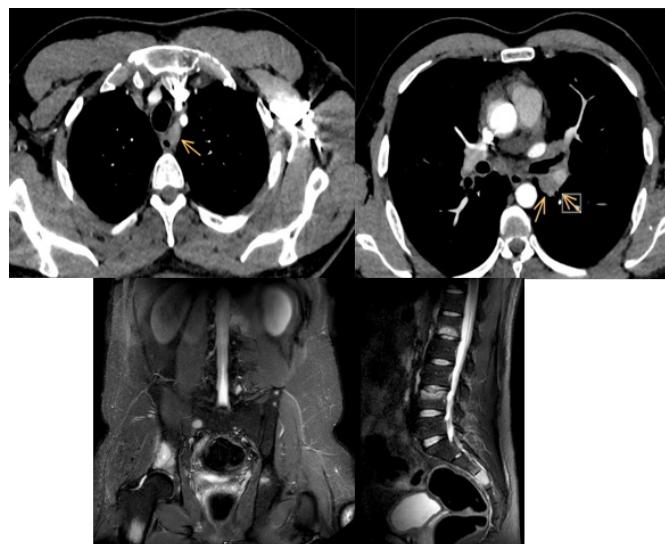
Online edition: <https://www.cancercaresreports.org/>

Copyright: © Chkhaidze L (2025). This Article is distributed under the terms of Creative Commons Attribution 4.0 International License

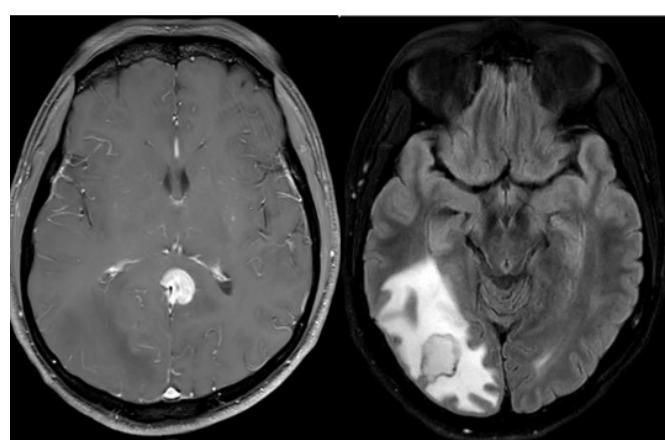
Cite this article: L Chkhaidze, A Geguchadze, M Vakhtangishvili, I Kiladze. Long-Lasting Response with Anti-PD-1 Antibody Following Progression on Anti-PD-L1 Antibody in Advanced Non-Small Cell Lung Cancer (NSCLC): A Case Report and Review of the Literature. J Clin Med Case Rep Oncology. 2025; 1(1): 1002.

Long-Lasting Response with Anti-PD-1 Antibody Following Progression on Anti-PD-L1 Antibody in Advanced Non-Small Cell Lung Cancer (NSCLC): A Case Report and Review of the Literature

programmed death 1/programmed death 1 ligand (PD-1/PD-L1) inhibitors, have demonstrated more durable responses than traditional cytotoxic agents [8-11]. In the era of immunotherapy, these inhibitors are increasingly used, especially for aNSCLC patients without oncogenic driver mutations [12,13]. Pembrolizumab, an anti-PD-1 monoclonal antibody, has shown significant improvements in OS in the first-line setting, both as monotherapy for patients with a PD-L1 tumor proportion score (TPS) of $\geq 1\%$ and in combination with platinum-based chemotherapy, regardless of PD-L1 expression [14-16].


Despite these advancements, the rapid clinical decline often observed during disease progression means that fewer than half of patients with aNSCLC receive second-line therapy [17,18]. For these patients, introducing ICIs for second-line treatment has further improved survival rates, whether used as a first-line or second-line option, especially for those with driver gene-negative aNSCLC [19,20].

Notwithstanding this progress, there is currently limited evidence supporting the use of ICIs as a second-line treatment after initial ICI therapy in aNSCLC. This case report presents an intriguing example of a 36-year-old patient with poor performance status who was diagnosed with metastatic lung adenocarcinoma in 2022. After disease progression on first-line therapy with combination of anti-PD-L1 inhibitor and platinum-based chemotherapy, the patient was treated with a second-line regimen re-challenging agents targeting PD-L1 on agents targeting PD-1. Remarkably, this approach yielded significant radiological and clinical improvements, leading to a notable enhancement in the patient's performance status and overall quality of life.


Case Report

A 36-year-old patient was diagnosed with Non-Small Cell Lung Cancer in August 2022. The diagnosis was confirmed through a biopsy performed by lymph node excision, which revealed lung adenocarcinoma with PD-L1 expression levels (PD-L1 IHC SP263) TPS 3% and CPS-4, No EGFR, ALK and BRAF mutations were detected. Initial imaging studies, including a chest and abdomen CT scan, indicated the presence of bone metastatic lesions, bilateral supraclavicular metastatic lymph nodes, mediastinal lymphadenopathy, a right lung node, bilateral lung tumor nodules, metastatic lesion in the liver. Brain MRI doesn't revealed any metastatic lesion. The patient has a history of smoking for 12 years 1 pack/day. In terms of family medical history, his grandfather had lung cancer.

Before admission to our hospital, the patient received the first-line immunochemotherapy with Cisplatin, Etoposide, and Atezolizumab (3 cycles, from 08-10.2022 in another institution). After three cycles his performance status was worsen, and clinical and Radiological assessment showed disease progression (FIG.1). In October 2022, the patient began experiencing neurological symptoms (ataxia, Cognitive Impairment, seizures, fatigue, ECOG PS 2-3) and hospitalized in emergency department. A brain MRI detected intra- and extracranial multiple metastatic lesions (Fig.2). The patient was without treatment for the following 3 months (Following disease progression, the patient did not return for further follow-up appointments at the clinic).

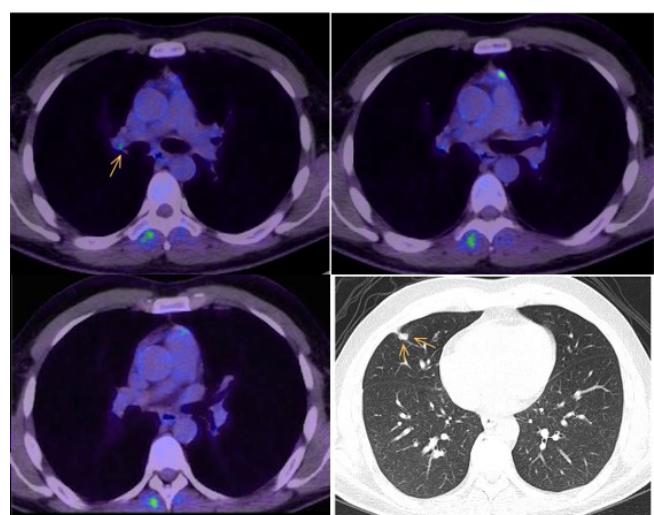
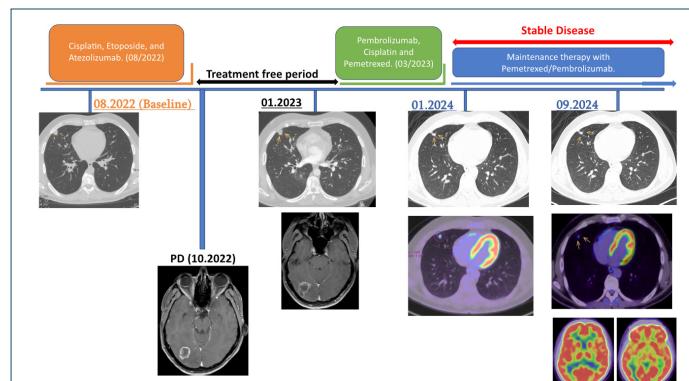

Figure 1: Small, enhancing mass in the right middle lobe, border of 4 and 5 segments, adjacent to the pleura. In size 15/12 mm. Enlarged paratracheal, subcarinal, pre-pericardial and bilateral hilar lymph nodes. Maximum size 16/14 mm (left hilar). Multiple, osseolytic metastatic lesions in cervical and lumbar vertebra, pelvic bones.

Figure 2: Brain MR scan: Multiple ring enhancing lesions are scattered at both cerebral hemispheres. They elicit intermediate or isointense signal at T2/FLAIR and marginal post contrast enhancement with no diffusion restriction, they are surrounded by vasogenic edema. Max. size 24/20 mm in right occipital lobe.


When the patient admitted to our hospital (01.2023), second opinion molecular testing confirmed lacking of driver mutations (EGFR/ALK). Subsequently, the patient underwent palliative radiotherapy with a total dose of 30 Gy (Whole Brain irradiation, L2-L5 vertebra, pelvic bone). The case was discussed by the multidisciplinary team (MDT), given the metastatic nature of the NSCLC (PD-L1=3%, no driver mutations), it was advised to start

the second-line treatment, using anti-PD-1 immunotherapy in combination with Cisplatin/Pemetrexed. Taking into account patient's age, lack of comorbidities, treatment free interval and previous regimen without pemetrexed (Cisplatin/pemetrexed is the standard of care for NSCLC adenocarcinoma histology in our institution). After palliative radiotherapy patient's PS was ECOG 2. From 03.2023 immunochemotherapy was started with pembrolizumab (200 mg every 3 weeks), cisplatin (75 mg/m² q21), and pemetrexed (500 mg/m² q21). After three cycles, the patient underwent brain MRI and chest/abdomen/pelvic CT scans (05.2023), which revealed a partial response. The whole-body FDG PET/CT (09.2023) scan revealed medium intensity FDG uptake in the right lung subpleural node. Additionally, there were multiple sclerotic and lytic lesions throughout the bones, with mild intensity FDG uptake. The Brain MRI scan: indicating no significant progression or regression compared to previous scans. During treatment patient's general condition was improved, patient became fully active and disease was controlled. After 4 cycles using platinum compound regimen, the treatment was continued with maintenance pemetrexed/pembrolizumab, until disease progression or unacceptable toxicity. The whole-body FDG PET/CT (01.2024) scan showed a favorable response, with a decrease in FDG uptake. (FIG.3).

Figure 3: The nodule in the middle lobe of the right lung is reduced in size. Its size is 9/7 mm (was 15/15 mm). The size of mediastinal and hilar lymph nodes is also significantly decreased. Most of them doesn't appear anymore. Metastatic pulmonary nodules in both lungs no longer differentiate.

Now the patient is on treatment, with durable excellent response on immunochemotherapy without any complaints, maintaining a high quality of life. (09.2024) (FIG 4.)

Figure 4: Short summarizing of radiological images.

Discussion

Here, we reported the case of a patient who responded to combination of PD-1 inhibitor and platinum-based chemotherapy in the second line of treatment, which had previously failed with a PD-L1 inhibitor and cytotoxic chemotherapy. Immune checkpoint inhibitors (ICIs), including anti-programmed cell death-1 (PD-1) and anti-programmed cell death ligand-1 (PD-L1) antibodies, have changed the treatment landscape for patients with advanced NSCLC [21-23]. The phase 3 KEYNOTE-189 and KEYNOTE-407 [16,24]. studies found that pembrolizumab, an anti-PD-1 monoclonal antibody combined with standard platinum-doublet chemotherapy significantly improved overall and progression-free survival compared to chemotherapy alone in patients with metastatic non-squamous and squamous NSCLC, regardless of PD-L1 TPS. Pembrolizumab plus chemotherapy may be more effective than pembrolizumab alone, especially in patients with lower PD-L1 expression. Updated data from the KN-189 trial indicated that overall survival (OS) outcomes were similar across PD-L1 TPS groups: $\geq 50\%$ (HR, 0.59; 95% CI, 0.39-0.88), 1% to 49% (HR, 0.62; 95% CI, 0.42-0.92), and $< 1\%$ (HR, 0.52; 95% CI, 0.36-0.74) [25]. Still now, for advanced NSCLC that progresses after platinum-based chemotherapy and immunotherapy, treatment options are limited to chemotherapy, regardless of actionable genomic alterations or PD-L1 status [26].

Currently, after progression to immunotherapy, the effectiveness of ICI rechallenge remains controversial for aNSCLC patients. Post-hoc analyses of the Keynote 010 study [27] found that 14 patients retreated with pembrolizumab after disease progression achieved an overall response rate (ORR) of 42.9%. Additionally, in the OAK study [28], 51% of patients in the atezolizumab arm who experienced disease progression continued atezolizumab treatment beyond progression. The OS for this group was longer than for those who switched to non-protocol anti-cancer therapies or received no follow-up treatment (12.7 months vs. 8.8 months vs. 2.2 months). These findings suggest that re-administering PD-1 inhibitors may still offer benefits after tumor progression.

A real-world study involving over 4,000 aNSCLC patients in the USA found that those receiving immunotherapy beyond progression (IBP) had longer OS compared to non-IBP patients (11.5 months vs. 5.1 months, $p < 0.001$) [29]. Similarly, a study by Ge et al. with 125 aNSCLC patients reported an OS of 26.6 months for the IBP group compared to 9.5 months for non-IBP patients ($p < 0.001$) [30]. Another study by Tian et al. also showed longer OS in the IBP group (15.7 vs. 5.0 months, $p < 0.001$) [31].

A study by Ziyi Xu et al. suggested that ICI rechallenge could be a viable option for NSCLC patients who progress after immunotherapy. In this research, the median progression-free survival (PFS) with initial immunotherapy was 5.8 months, compared to 6.8 months with ICI rechallenge [32]. In a retrospective study by Min Wang et al. assessing the efficacy of immunotherapy beyond progression, 121 patients with DP were divided into two groups: the IBP and non-IBP groups. OS and PFS showed no significant differences between the two groups across the entire population. The authors concluded that the clinical outcomes for the IBP group were similar to those for the non-IBP group in advanced NSCLC patients following first-line immunotherapy [33]. However, several studies have reported conflicting results. A study by Enomoto et al. [34] found no significant benefits from continuing nivolumab in aNSCLC patients. Similar findings were observed in two smaller studies [35,36], that reported no

advantages from ICI re-challenge. Some studies suggest that NSCLC that is resistant to initial ICI therapies may show limited responses to ICI rechallenge, providing clinical benefits to only a small subset of patients. The ORR ranged from 0% to 8.5%, with a median PFS of 1.5 to 2.9 months and a median OS of 6.5 to 11.0 months [35,37, 38].

Our patient had excellent and durable response on PD-1 inhibitor and chemotherapy after failure of combination of PD-L1 inhibitor and cytotoxic chemotherapy. To date, limited published data is available about the efficacy and safety of using of PD-1 inhibitors after failure of anti PD-L1 agents. Although PD-1 and PD-L1 inhibitors operate through similar mechanisms, they exhibit differences in efficacy. Comparative analysis using half-maximal effective concentration (EC50) values from functional assays showed that PD-L1 antibodies have significantly lower EC50 values than PD-1 antibodies, indicating that PD-L1 inhibitors may be more effective [39]. Practically, PD-1 and PD-L1 inhibitors are considered equally effective, despite a lack of direct comparisons. Mechanistically, PD-1 inhibitors block the interaction between PD-1 and its ligands, PD-L1 and PD-L2, which negatively regulate T cell activation. In contrast, PD-L1 inhibitors prevent PD-L1 from engaging with its receptors, PD-1 and CD80. While CD80 is generally a co-stimulatory receptor, it can also negatively regulate T cells, and its overexpression may contribute to resistance against PD-1 inhibitors [40, 41].

In this case, our patient exhibits a partial, durable response despite having a low PD-L1 TPS of 3%. Some studies indicate that PD-L1 expression is not a reliable indicator of sensitivity to immunotherapy. Immune checkpoint inhibitors (ICIs) may also benefit individuals with negative PD-L1 expression, and their ability to predict responses to immunotherapy is not particularly strong [11,42]. Despite this, PD-L1 is still considered an inadequate biomarker, as some individuals with high PD-L1 expression do not respond to treatment, while those with negative or low expression often show a positive response [43]. While pembrolizumab based therapy can lead to significant and lasting tumor responses, the lack of reliable biomarkers to predict individual prognosis presents a significant challenge for its broader clinical application. Another potential biomarker, tumor mutational burden (TMB), shows promise, but its predictive value remains debated [44]. In referring back to our case, after progression on atezolizumab/cisplatin-based chemotherapy, the patient was started on pembrolizumab combined with cisplatin/pemetrexed, along with vitamin B12 and folic acid supplements. The carboplatin and pemetrexed chemotherapy regimen is widely recognized as the standard first-line treatment for adenocarcinoma histology. Molecular findings showed that the patient's tumor was negative for EGFR, BRAF, and immunohistochemistry showed no ALK rearrangements and 3% PD-L1 expression. Lab results showed normal creatinine levels and liver function.

When selecting a combination of PD-1 inhibition and chemotherapy, various factors must be considered. Our patient presented with a significant symptom burden, including fatigue, cough, dyspnea, anorexia, weight loss, and pain. Considering the patient's age, absence of comorbidity, treatment-free interval, and previous treatment regimen, chemotherapy was added to anti-PD-1 therapy for fast effect considered symptoms improvement alongside survival. The selection of the second-line systemic therapy also based by a network meta-analysis that indirectly indicated that pembrolizumab combined with chemotherapy resulted in prolonged overall survival compared to the atezolizumab chemotherapy group [45]. It is well-estab-

lished that chemotherapy agents possess immunomodulatory properties, which can directly and indirectly stimulate immune responses and enhance tumor immunogenicity. Additionally, chemotherapy may boost the anti-tumor effects of immunotherapy, potentially increasing the chances of clinical benefit from pembrolizumab, irrespective of tumor PD-L1 expression [46,47].

In our case, the patient exhibited an unexpected, partial, and long-lasting response to ICI rechallenge. It is well recognized that patients who previously responded well to immunotherapy tend to derive greater survival benefits from second-line ICI-based treatments. While the exact mechanism for this observation remains unclear, one possible explanation is that patients who had favorable responses to prior immunotherapy developed immune memory cells [48,49], allowing for a quicker restoration of the immune system during subsequent rounds of treatment. The patient fully tolerated both the chemotherapy agents and the anti-PD-1 therapy, experiencing no serious side effects. This is noteworthy considering that the incidence of grade 5 treatment-related adverse events was higher in the pembrolizumab plus chemotherapy group compared to the chemotherapy-only group [50,51]. This case may indicate the potential effectiveness of re-challenging ICI in selected patients with advanced NSCLC who have progressed on prior ICI treatment. However, further research is needed to confirm the efficacy and safety of this approach in NSCLC patients.

Conclusion

To summarize, this case report shows the potential role of switching to anti-PD-1 treatment in selected patients with NSCLC who were non-responsive to PD-L1 inhibition. Clinical trials investigating this strategy would be highly beneficial for this cohort of patients.

Disclosure: Ivane Kiladze- reports receiving fees for serving on an advisory board and lecture fees from Merck Sharp & Dohme, lecture fees from AstraZeneca and Sevier.

Conflict of Interest: Other authors declare no conflicts of interest.

Author Contributions: LC, AG and IK: conceptualization and study design. LC, AG and MV: data collection. LC, AG and IK: literature research. LC, AG and IK: manuscript drafting. LC, AG and IK: revision. All authors contributed to the article and approved the submitted version.

Funding: The authors have not declared a specific grant for this research from any funding agency in the public, commercial or not-for-profit sectors.

References

- Bray F, Laversanne M, Sung H, et al. Global cancer statistics 2022: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. *CA Cancer J Clin.* 2024; 74(3): 229-263. doi: 10.3322/caac.21834.
- Molina JR, Yang P, Cassivi SD, Schild SE, Adjei AA. Non-small cell lung cancer: epidemiology, risk factors, treatment, and survivorship. *Mayo Clin Proc.* 2008; 83(5): 584-594. doi: 10.4065/83.5.584.
- Thandra KC, Barsouk A, Saginala K, Aluru JS, Barsouk A. Epidemiology of lung cancer. *Contemp Oncol (Pozn).* 2021; 25(1): 45-52. doi: 10.5114/wo.2021.103829
- Non-Small Cell Lung Cancer Collaborative Group. Chemotherapy and supportive care versus supportive care alone for advanced non-small cell lung cancer. *Cochrane Database Syst Rev.* 2010; 2010(5): CD007309. Published 2010 May 12. doi: 10.1002/14651858.CD007309.pub2.
- Schiller JH, Harrington D, Belani CP, et al. Comparison of four chemotherapy regimens for advanced non-small-cell lung cancer. *N Engl J Med.* 2002; 346(2): 92-98. doi: 10.1056/NEJMoa011954.
- Gibson AJW, Li H, D'Silva A, et al. Impact of number versus location of metastases on survival in stage IV M1b non-small cell lung cancer. *Med Oncol.* 2018; 35(9): 117. Published 2018 Aug 2. doi: 10.1007/s12032-018-1182-8
- Ali A, Goffin JR, Arnold A, Ellis PM. Survival of patients with non-small-cell lung cancer after a diagnosis of brain metastases. *Curr Oncol.* 2013; 20(4): e300-e306. doi: 10.3747/co.20.1481.
- Reck M, Rodríguez-Abreu D, Robinson AG, et al. Pembrolizumab versus Chemotherapy for PD-L1-Positive Non-Small-Cell Lung Cancer. *N Engl J Med.* 2016; 375(19): 1823-1833. doi: 10.1056/NEJMoa1606774.
- Mok TSK, Wu YL, Kudaba I, et al. Pembrolizumab versus chemotherapy for previously untreated, PD-L1-expressing, locally advanced or metastatic non-small-cell lung cancer (KEYNOTE-042): a randomised, open-label, controlled, phase 3 trial. *Lancet.* 2019; 393(10183): 1819-1830. doi: 10.1016/S0140-6736(18)32409-7.
- Borghaei H, Paz-Ares L, Horn L, et al. Nivolumab versus Docetaxel in Advanced Nonsquamous Non-Small-Cell Lung Cancer. *N Engl J Med.* 2015; 373(17): 1627-1639. doi: 10.1056/NEJMoa1507643.
- Rittmeyer A, Barlesi F, Waterkamp D, et al. Atezolizumab versus docetaxel in patients with previously treated non-small-cell lung cancer (OAK): a phase 3, open-label, multicentre randomised controlled trial [published correction appears in Lancet. 2017 Apr 8; 389(10077): e5. doi: 10.1016/S0140-6736(17)30904-2]. *Lancet.* 2017; 389(10066): 255-265. doi: 10.1016/S0140-6736(16)32517-X.
- Horn L, Spigel DR, Vokes EE, et al. Nivolumab Versus Docetaxel in Previously Treated Patients with Advanced Non-Small-Cell Lung Cancer: Two-Year Outcomes From Two Randomized, Open-Label, Phase III Trials (CheckMate 017 and CheckMate 057). *J Clin Oncol.* 2017; 35(35): 3924-3933. doi: 10.1200/JCO.2017.74.3062.
- Liu SM, Zheng MM, Pan Y, Liu SY, Li Y, Wu YL. Emerging evidence and treatment paradigm of non-small cell lung cancer. *J Hematol Oncol.* 2023; 16(1): 40. Published 2023 Apr 17. doi: 10.1186/s13045-023-01436-2.
- Reck M, Rodríguez-Abreu D, Robinson AG, et al. Updated Analysis of KEYNOTE-024: Pembrolizumab Versus Platinum-Based Chemotherapy for Advanced Non-Small-Cell Lung Cancer With PD-L1 Tumor Proportion Score of 50% or Greater. *J Clin Oncol.* 2019; 37(7): 537-546. doi: 10.1200/JCO.18.00149.
- Gandhi L, Rodríguez-Abreu D, Gadgil S, et al. Pembrolizumab plus Chemotherapy in Metastatic Non-Small-Cell Lung Cancer. *N Engl J Med.* 2018; 378(22): 2078-2092. doi: 10.1056/NEJMoa1801005.
- Paz-Ares L, Luft A, Vicente D, et al. Pembrolizumab plus Chemotherapy for Squamous Non-Small-Cell Lung Cancer. *N Engl J Med.* 2018; 379(21): 2040-2051. doi: 10.1056/NEJMoa1810865.
- Davies J, Patel M, Gridelli C, de Marinis F, Waterkamp D, McCusker ME. Real-world treatment patterns for patients receiving second-line and third-line treatment for advanced non-small cell lung cancer: A systematic review of recently published studies. *PLoS One.* 2017; 12(4): e0175679. Published 2017 Apr 14.

doi: 10.1371/journal.pone.0175679.

18. Lazzari C, Bulotta A, Ducceschi M, et al. Historical Evolution of Second-Line Therapy in Non-Small Cell Lung Cancer. *Front Med (Lausanne)*. 2017; 4: 4. Published 2017 Jan 23. doi: 10.3389/fmed.2017.00004.

19. Herbst RS, Baas P, Kim DW, et al. Pembrolizumab versus docetaxel for previously treated, PD-L1-positive, advanced non-small-cell lung cancer (KEYNOTE-010): a randomised controlled trial. *Lancet*. 2016; 387(10027): 1540-1550. doi: 10.1016/S0140-6736(15)01281-7.

20. Brahmer J, Reckamp KL, Baas P, et al. Nivolumab versus Docetaxel in Advanced Squamous-Cell Non-Small-Cell Lung Cancer. *N Engl J Med*. 2015; 373(2): 123-135. doi: 10.1056/NEJMoa1504627.

21. Herbst RS, Morgensztern D, Boshoff C. The biology and management of non-small cell lung cancer. *Nature*. 2018; 553(7689): 446-454. doi: 10.1038/nature25183.

22. Kim ES, Herbst RS, Wistuba II, et al. The BATTLE trial: personalizing therapy for lung cancer. *Cancer Discov*. 2011; 1(1): 44-53. doi: 10.1158/2159-8274.CD-10-0010.

23. Ribas A, Wolchok JD. Cancer immunotherapy using checkpoint blockade. *Science*. 2018; 359(6382): 1350-1355. doi: 10.1126/science.aar4060.

24. Goffin J, Lacchetti C, Ellis PM, Ung YC, Evans WK; Lung Cancer Disease Site Group of Cancer Care Ontario's Program in Evidence-Based Care. First-line systemic chemotherapy in the treatment of advanced non-small cell lung cancer: a systematic review. *J Thorac Oncol*. 2010; 5(2): 260-274. doi: 10.1097/JTO.0b013e3181c6f035.

25. Gadgeel SM, Garassino MC, Esteban E, et al. KEYNOTE-189: Updated OS and progression after the next line of therapy (PFS2) with pembrolizumab (pembro) plus chemo with pemetrexed and platinum vs placebo plus chemo for metastatic nonsquamous NSCLC. *J Clin Oncol*. 2019; 37(suppl; abstr 9013). doi: DOI: 10.1200/JCO.2019.37.15_suppl.9013.

26. Ettinger DS, Wood DE, Aisner DL, et al. NCCN Guidelines® Insights: Non-Small Cell Lung Cancer, Version 2.2023. *J Natl Compr Canc Netw*. 2023; 21(4): 340-350. doi: 10.6004/jnccn.2023.0020.

27. Herbst RS, Garon EB, Kim DW, et al. Long-Term Outcomes and Retreatment Among Patients With Previously Treated, Programmed Death-Ligand 1-Positive, Advanced Non-Small-Cell Lung Cancer in the KEYNOTE-010 Study. *J Clin Oncol*. 2020; 38(14): 1580-1590. doi: 10.1200/JCO.19.02446.

28. Gandara DR, von Pawel J, Mazieres J, et al. Atezolizumab Treatment Beyond Progression in Advanced NSCLC: Results from the Randomized, Phase III OAK Study. *J Thorac Oncol*. 2018; 13(12): 1906-1918. doi: 10.1016/j.jtho.2018.08.2027.

29. Stinchcombe TE, Miksad RA, Gossai A, Griffith SD, Torres AZ. Real-World Outcomes for Advanced Non-Small Cell Lung Cancer Patients Treated With a PD-L1 Inhibitor Beyond Progression. *Clin Lung Cancer*. 2020; 21(5): 389-394.e3. doi: 10.1016/j.cllc.2020.04.008.

30. Ge X, Zhang Z, Zhang S, et al. Immunotherapy beyond progression in patients with advanced non-small cell lung cancer. *Transl Lung Cancer Res*. 2020; 9(6): 2391-2400. doi: 10.21037/tlcr-20-1252.

31. Tian T, Yu M, Yu Y, et al. Immune checkpoint inhibitor (ICI)-based treatment beyond progression with prior immunotherapy in patients with stage IV non-small cell lung cancer: a retrospective study. *Transl Lung Cancer Res*. 2022; 11(6): 1027-1037. doi: 10.21037/tlcr-22-376.

32. Xu Z, Hao X, Yang K, et al. Immune checkpoint inhibitor rechallenge in advanced or metastatic non-small cell lung cancer: a retrospective cohort study. *J Cancer Res Clin Oncol*. 2022; 148(11): 3081-3089. doi: 10.1007/s00432-021-03901-2.

33. Wang M, Jing X, Chen F, Lu S, Sun Y. Immune checkpoint inhibitor (ICI)-based treatment beyond progression with prior immunotherapy in patients with driver-gene negative advanced non-small cell lung cancer. *BMC Cancer*. 2024; 24(1): 569. Published 2024 May 7. doi: 10.1186/s12885-024-12315-5.

34. Enomoto T, Tamiya A, Matsumoto K, et al. Nivolumab treatment beyond progressive disease in advanced non-small cell lung cancer [published correction appears in *Clin Transl Oncol*. 2022 Jul; 24(7): 1445. doi: 10.1007/s12094-022-02794-y]. *Clin Transl Oncol*. 2021; 23(3): 582-590. doi: 10.1007/s12094-020-02452-1.

35. Fujita K, Uchida N, Yamamoto Y, et al. Retreatment With Anti-PD-L1 Antibody in Advanced Non-small Cell Lung Cancer Previously Treated with Anti-PD-1 Antibodies. *Anticancer Res*. 2019; 39(7): 3917-3921. doi: 10.21873/anticanres.13543.

36. Watanabe H, Kubo T, Ninomiya K, et al. The effect and safety of immune checkpoint inhibitor rechallenge in non-small cell lung cancer. *Jpn J Clin Oncol*. 2019; 49(8): 762-765. doi: 10.1093/jjco/hyz066.

37. Katayama Y, Shimamoto T, Yamada T, et al. Retrospective Efficacy Analysis of Immune Checkpoint Inhibitor Rechallenge in Patients with Non-Small Cell Lung Cancer. *J Clin Med*. 2019; 9(1): 102. Published 2019 Dec 31. doi: 10.3390/jcm9010102.

38. Akamatsu H, Teraoka S, Takamori S, Miura S, Hayashi H, Hata A, et al. Nivolumab Retreatment in Non-Small Cell Lung Cancer Patients Who Responded to Prior Immune Checkpoint Inhibitors and Had ICI-Free Intervals (WJOG9616L). *Clinical cancer research: an official journal of the American Association for Cancer Research*. 2022; 28(15): OF1-OF7. Advance online publication. <https://doi.org/10.1158/1078-0432.CCR-22-06022021>.

39. De Sousa Linhares A, Battin C, Jutz S, et al. Therapeutic PD-L1 antibodies are more effective than PD-1 antibodies in blocking PD-1/PD-L1 signaling. *Sci Rep*. 2019; 9(1): 11472. Published 2019 Aug 7. doi: 10.1038/s41598-019-47910-1.

40. Tatari-Calderone Z, Semnani RT, Nutman TB, Schlom J, Sabzevari H. Acquisition of CD80 by human T cells at early stages of activation: functional involvement of CD80 acquisition in T cell to T cell interaction. *J Immunol*. 2002; 169(11): 6162-6169. doi: 10.4049/jimmunol.169.11.6162.

41. Rollins MR, Gibbons Johnson RM. CD80 Expressed by CD8+ T Cells Contributes to PD-L1-Induced Apoptosis of Activated CD8+ T Cells. *J Immunol Res*. 2017; 2017: 7659462. doi: 10.1155/2017/7659462.

42. Borghaei H, Gettinger S, Vokes EE, et al. Five-Year Outcomes From the Randomized, Phase III Trials CheckMate 017 and 057: Nivolumab Versus Docetaxel in Previously Treated Non-Small-Cell Lung Cancer [published correction appears in *J Clin Oncol*. 2021 Apr 1; 39(10): 1190. doi: 10.1200/JCO.21.00546]. *J Clin Oncol*. 2021; 39(7): 723-733. doi: 10.1200/JCO.20.01605.

43. Garon EB, Rizvi NA, Hui R, et al. Pembrolizumab for the treatment of non-small-cell lung cancer. *N Engl J Med*. 2015; 372(21): 2018-2028. doi: 10.1056/NEJMoa1501824.

44. Addeo A, Friedlaender A, Banna GL, Weiss GJ. TMB or not TMB as a biomarker: That is the question. *Crit Rev Oncol Hematol*. 2021; 163: 103374. doi: 10.1016/j.critrevonc.2021.103374.

45. Frederickson AM, Arndorfer S, Zhang I, et al. Pembrolizumab plus chemotherapy for first-line treatment of metastatic non-squamous non-small-cell lung cancer: a network meta-analysis.

Immunotherapy. 2019; 11(5): 407-428. doi: 10.2217/imt-2018-0193.

46. Kersten K, Salvagno C, de Visser KE. Exploiting the Immuno-modulatory Properties of Chemotherapeutic Drugs to Improve the Success of Cancer Immunotherapy. *Front Immunol.* 2015; 6: 516. Published 2015 Oct 7. doi: 10.3389/fimmu.2015.00516.

47. Galluzzi L, Zitvogel L, Kroemer G. Immunological Mechanisms Underneath the Efficacy of Cancer Therapy. *Cancer Immunol Res.* 2016; 4(11): 895-902. doi: 10.1158/2326-6066.CIR-16-0197.

48. Brahmer JR, Drake CG, Wollner I, et al. Phase I study of single-agent anti-programmed death-1 (MDX-1106) in refractory solid tumors: safety, clinical activity, pharmacodynamics, and immunologic correlates. *J Clin Oncol.* 2010; 28(19): 3167-3175. doi: 10.1200/JCO.2009.26.7609.

49. Giaj Levra M, Cotté FE, Corre R, et al. Immunotherapy rechallenge after nivolumab treatment in advanced non-small cell lung cancer in the real-world setting: A national data base analysis. *Lung Cancer.* 2020; 140: 99-106. doi: 10.1016/j.lungcan.2019.12.017.

50. Langer CJ, Gadgeel SM, Borghaei H, et al. Carboplatin and pemetrexed with or without pembrolizumab for advanced, non-squamous non-small-cell lung cancer: a randomised, phase 2 cohort of the open-label KEYNOTE-021 study. *Lancet Oncol.* 2016; 17(11): 1497-1508. doi: 10.1016/S1470-2045(16)30498-3.

51. Gandhi L, Rodríguez-Abreu D, Gadgeel S, et al. Pembrolizumab plus Chemotherapy in Metastatic Non-Small-Cell Lung Cancer. *N Engl J Med.* 2018; 378(22): 2078-2092. doi: 10.1056/NEJMoa1801005.